
Antiresonances in molecular wires

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1999 J. Phys.: Condens. Matter 11 6911

(http://iopscience.iop.org/0953-8984/11/36/308)

Download details:

IP Address: 171.66.16.220

The article was downloaded on 15/05/2010 at 17:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-8984/11/36
http://iopscience.iop.org/0953-8984
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys.: Condens. Matter11 (1999) 6911–6926. Printed in the UK PII: S0953-8984(99)03905-3

Antiresonances in molecular wires

Eldon G Emberly and George Kirczenow
Department of Physics, Simon Fraser University, Burnaby, B.C., Canada V5A 1S6

E-mail: eemberly@sfu.ca

Received 4 May 1999, in final form 19 July 199

Abstract. We present analytic and numerical studies based on the Landauer theory of conductance
antiresonances of molecular wires. Our analytic treatment is a solution of the Lippmann–Schwinger
equation for the wire that includes the effects of the non-orthogonality of the atomic orbitals on
different atoms exactly. The problem of non-orthogonality is treated by solving the transport
problem in a new Hilbert space which is spanned by an orthogonal basis. An expression is
derived for the energies at which antiresonances should occur for a molecular wire connected
to a pair of single-channel one-dimensional leads. From this expression we identify two distinct
mechanisms that give rise to antiresonances under different circumstances. The exact treatment of
non-orthogonality in the theory is found to be necessary to obtain reliable results. Our numerical
simulations extend this work to multi-channel leads and to molecular wires connected to three-
dimensional metallic nano-contacts. They demonstrate that our analytic results also provide a
good description of these more complicated systems provided that certain well-defined conditions
are met. These calculations suggest that antiresonances should be experimentally observable in the
differential conductance of molecular wires of certain types.

1. Introduction

There has been renewed interest recently in molecular wires [1], stimulated in part by
experimental work that has begun to explore possible ways of measuring the conductance of a
single molecule [2–5]. Theoretically, electron transport in molecular wires has been studied by
considering the transmission probability for electrons to scatter through the structure [3,6–10].
As with other mesoscopic systems, the electrical conductanceG of the molecule is related to
the transmission probabilityT at the Fermi level by the Landauer formula [11]G = (e2/h)T .

As expected for mesoscopic systems with discrete energy levels connected to continuum
reservoirs, molecular wires display resonances in the transmission probability. Another
potentially important transport phenomenon that has been predicted in molecular wires is
the appearance of antiresonances [7]. These are defined to be zeros of the transmission and
correspond to the incident electrons being perfectly reflected by the molecule. In molecular
systems this phenomenon was first recognized in theoretical studies of electron transfer between
donor and acceptor sites of a molecule [12–14]. At that time it was correctly attributed
to interference effects between the different molecular orbitals through which the electron
propagates. However, antiresonances have received less attention in the context of electrical
conduction through molecular wires connected to metallic contacts and we address this topic
theoretically in the present article [15].

The occurrence of antiresonances has also been reported for other mesoscopic systems.
They have been found in quantum waveguides [16–22] where the transmission displays
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resonance–antiresonance structure. These systems in the form of stub tuners have been
shown to operate as electronic gates. Antiresonances have also been proposed to occur in
double-barrier resonant tunnelling (DBRT) devices. There they have been explained using a
Fabry–Perot model of the DBRT [23] and have also arisen in more sophisticated tight-binding
calculations of the same structures [24]. In the above devices it is the wave nature of the
electrons that leads to these interesting interference effects. Although the wave nature of the
electrons is also the cause of antiresonances in molecular wires, it will be seen below that
different mechanisms are responsible for their occurrence in the molecular systems.

We begin by considering a simple model of molecular wires exhibiting antiresonances
that we solve analytically. We then proceed to investigate the robustness of the analytically
predicted behaviour by studying more realistic models numerically.

Our analytic model of the molecular wire consists of a molecule attached to two ideal
single-channel 1D leads. Electrons are incident from the left lead in only one propagating
channel and scatter through the molecule to the single channel of the right lead. The electronic
structure of the molecule is described as a discrete set of molecular orbitals which couple
to the single-mode leads. We show that in discussing molecular wire antiresonances it is
important to take into account explicitly the fact that the atomic orbitals on neighbouring
atoms overlap each other; in some of the systems that we consider antiresonances are only
found if this non-orthogonality is included fully in the theory. In our analytic calculations
the non-orthogonality is taken into account exactly by defining a new energy- and overlap-
dependent Hamiltonian in a basis that is orthogonal and spans a new Hilbert space [15]. This
switching of Hilbert spaces greatly simplifies the analytic solution of the present problem
and should have broad applicability to other transport problems as well, whenever the
mutual non-orthogonality of tight-binding states is important. It is an alternative to standard
orthogonalization transformations such as the Wannier or Löwdin transformation. It has the
advantages of being much simpler to implement and much more flexible than the Wannier
transformation since it can be usefully applied toall systems described by tight-binding
models in contrast to the transformation to Wannier states that is useful mainly in the theory
of crystalline solids. It also differs from the Löwdin transformation that is used in quantum
chemistry which defines a new set of orthogonal atomic orbitals in terms of the original non-
orthogonal atomic orbital set [25]. We solve the Lippmann–Schwinger equation in this new
Hilbert space to find the transmission probabilityT for the electrons to scatter through the
molecule. We derive a simple condition controlling where the antiresonances occur in the
transmission spectrum. This condition only depends on the free propagator for the molecule
and the energy-dependent couplings between the molecular orbitals and the ideal leads. For
a molecule withN orbitals, the antiresonance condition predicts that there can be at most
(N − 1) + 2 antiresonances.

We then present numerical results for two more general molecular wire models in order to
show how antiresonances might be observable in real systems. Our analytic model is applic-
able toπ conjugated systems where theπ orbitals are independent of theσ states that are also
present in realistic systems. It is able to predict the energies at which antiresonances occur in
our more sophisticated calculations. The first of these uses polyacetylene-like polymers for
the two leads which are attached to a molecule that has a singleπ molecular orbital. This
molecular wire exhibits a transmission antiresonance in the occupiedπ band of the leads.

Our second more realistic model is of a molecular wire bridging a mechanically controlled
break junction in a metal wire. In this case the molecular wire consists of an ‘active’ molecular
segment connected to the two metal contacts by a pair of finiteπ conjugated chains. In
this calculation we show how an antiresonance can be generated near the Fermi energy of
the metallic leads. The differential conductance is calculated for this system using Landauer
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theory and the antiresonance is characterized by a dip in conductance. We find that for both
of these calculations involving multi-mode leads our analytic theory of antiresonances has
predictive power.

In section 2, we describe the method that we use to treat the non-orthogonality of atomic
orbitals and present the solution to the Lippmann–Schwinger equation for our analytic model.
The antiresonance condition is then derived in section 3. Two calculations for more realistic
systems are presented in section 4. We then conclude with section 5. The appendix summarizes
the calculation of the Green’s function for the semi-infinite 1D leads and takes the non-
orthogonality of atomic orbitals into account.

2. Analytic theory: changing Hilbert spaces and solution of the Lippmann–Schwinger
equation

Most theoretical studies of molecular wires have used tight-binding bases of atomic orbitals for
the molecular and lead Hamiltonians. The atomic orbitals on different atoms are not orthogonal
to each other and, as we will show below, this non-orthogonality can have important physical
consequences for molecular wire antiresonances. We treat this lack of orthogonality exactly in
our analytic Lippmann–Schwinger (LS) theory [26] of antiresonances in a molecule connected
to single-channel leads by solving the problem in a new Hilbert space spanned by an orthogonal
basis where we define a new energy-dependent Hamiltonian matrix [15]. We begin with a
derivation and discussion of this change of Hilbert space which will be vital to our definition
of a LS equation below.

We start with Schr̈odinger’s equation for the eigenvectors{|9〉} of a HamiltonianH :

H |9〉 = E|9〉. (1)

We wish to solve equation (1) for|9〉. We begin by expressing|9〉 in a non-orthogonal basis
{|n〉} of the usual physical Hilbert spaceA for the system as|9〉 =∑n 9n|n〉. Inserting this
expression for|9〉 into equation (1) and applying〈m| we obtain∑

n

Hm,n9n = E
∑
n

Sm,n9n (2)

where we defineHm,n = 〈m|H |n〉 to be the Hamiltonian matrix andSm,n = 〈m|n〉 to be the
overlap matrix. We note that if the basis{|n〉} is incomplete then equation (2) becomes an
approximation that may be justified variationally [25]. In either case, we will assume that
equation (2) provides an adequate description of the system of interest and our objective will
be to solve it exactly for the coefficients9n.

We will assume in the following that the sums in equation (2) (and similar summations
in the remainder of this article) converge absolutely [27] so that the order in which the sum-
mations are performed is unimportant. This assumption is justified for the physical applications
that we will be considering where the non-orthogonal basis states{|n〉} will be atomic tight-
binding orbitals (or molecular orbitals confined to finite molecular segments) and only a finite
number of these orbitals are considered on any particular site. For such basis states,Hm,n and
Sm,n decreaseexponentiallyas the spatial separation between the tight-binding sites associated
with basis states|m〉 and |n〉 becomes large. This guarantees the absolute convergence of
the summations in equation (2) even if the system is infinite in extent and|9〉 is a physical
scattering state that extends throughout the system.

The absolute convergence of the series in equation (2) enables us to rewrite equation (2)
as ∑

n

HE
m,n9n = E9m (3)
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where

HE
m,n = Hm,n − E(Sm,n − δm,n). (4)

We are concerned with open systems that have a continuous spectrum of energy eigenvalues.
Thus our objective is to find the coefficients9n that satisfy equation (3) for every value ofE
belonging to the continuum of energy eigenvalues of the HamiltonianH . To do this we find
it convenient to consider the related matrix eigenproblem∑

n

HE
m,n9

′
n = E′9 ′m (5)

whereE′ is any eigenvalue of the matrixHE
m,n and the set of coefficients{9 ′m} form the

corresponding eigenvector. The solution{9m} of equation (3) that we seek is then identical to
an eigenvector{9 ′m} of the matrixHE

m,n for which the eigenvalueE′ in equation (5) is equal
toE.

We now re-interpret equation (5) as the matrix form of a new Schrödinger equation

HE|9〉′ = E′|9〉′. (6)

involving a new Hamiltonian operatorHE and its eigenvectors|9〉′ in a new Hilbert space
A′. We construct this new Hilbert space as follows: we first form the vector spaceV ′ that is
spanned by anorthonormalbasis (that we denote as{|n〉′}) of the matrixHE

m,n [28]. (Note that
the basis vectors|n〉′ defined in this way are abstract mathematical entities which should not be
confused with the (non-orthogonal) physical state vectors|n〉 of the original (physical) Hilbert
spaceA or with any other vectors in that Hilbert space.) For the systems of interest in this
work,V ′ is infinite dimensional and we define the Hilbert spaceA′ to be the completion ofV ′

with respect to the norm topology [29]. Equation (5) will be the matrix form of equation (6)
in Hilbert spaceA′ as desired provided that the new Hamiltonian operatorHE is chosen such
that its matrix elements satisfy〈m|′HE|n〉′ = HE

m,n and|9〉′ = ∑n 9
′
n|n〉′. It follows from

equation (4) that the operatorHE is Hermitian inA′ becauseE is real andHm,n, Sm,n andδm,n
are Hermitian matrices.

Thus we have transformed a problem that was formulated in terms of a non-orthogonal
basis into an equivalent one in an orthogonal basis of adifferentHilbert space. Essentially
what we have done is to create a new problem (which may be easier to solve) from our old
one. This is quite different from other orthogonalization schemes (such as that of Gramm-
Schmidt or L̈owdin [25]). In those schemes the original non-orthogonal basis of the Hilbert
space is orthogonalized by transforming it into a new orthogonal basis of the same space. Our
method has no such orthogonalization procedure: instead we assume our new operators and
eigenvectors to be expressed in terms of an orthogonal basis of a new space and define them
such that the matrix eigenvalue problem, equation (5), follows. This re-definition creates an
energy-dependent Hamiltonian whose energy dependence will be important in our discussion
of antiresonances below.

It should be noted that only the eigenvectors ofHE that have the eigenvalueE have the
same coefficients9n as eigenvectors of the true HamiltonianH . The other eigenvectors ofHE

do not correspond to any eigenstate of the physical HamiltonianH , but they nevertheless play
an important role when calculating the Green’s function corresponding toHE which appears
in the Lippmann–Schwinger equation below.

Since no assumptions (other than that of the absolute convergence of the summations
in equation (2)) have been made about the nature of the system being considered, this
method of orthogonalization by switching to a new Hilbert space is extremely general. If
the basis states{|n〉} are tight-binding atomic orbitals then the present transformation (unlike
the transformation to Wannier functions) can be used irrespective of the types of atom involved
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or their locations in space. Furthermore, our transformation has the additional flexibility that
the non-orthogonal basis states need not all be of the same generic type. For example, some
of them may be atomic orbitals and others molecular orbitals on some cluster(s) of atoms that
form a part of the physical system. This flexibility will be exploited below. We now proceed
to outline the application to antiresonances in molecular wires.

Our analytic theory for electron transport in molecular wires is based on an idealized
model consisting of a molecule connected to two identical single-channel ideal leads which
are represented by 1D chains of atoms (shown in figure 1). We solve for the scattering
wavefunction|9〉 which describes an electron incident from the left lead with energyE and
having a probabilityT (E) of scattering through the molecule to the right lead. The system
satisfiesH |9〉 = E|9〉, whereH = H0 +W . H0 is the Hamiltonian for the three isolated
systems consisting of the two leads and the molecule, andW couples the lead sites adjacent
to the molecule with the sites on the molecule.

β

αα

β

αα
WW ββ

αα
321-3 -2 -1

Left Lead Right Lead

Molecule

Figure 1. A schematic diagram for the idealized model of a molecular wire, consisting of left and
right single-channel leads and the molecule. These three systems are described by the Hamiltonian
H0, with 〈n|H0|n〉 = α and〈n|H0|m〉 = β for n,m on the left or right leads withm = n± 1. On
the molecule〈φj |H0|φk〉 = εj δj,k . The molecular orbitals are coupled to the adjacent lead sites
byW , with 〈−1|W |φj 〉 = W−1,j etc.

We now introduce a non-orthogonal basis consisting of atomic orbitals{|n〉} with
n = −∞, . . . ,−1 on the left lead andn = 1, . . . ,∞ on the right lead and a set of molecular
orbitals (MOs){|φj 〉} for the molecule. In this basis the wavefunction has the form

|9〉 =
−1∑

n=−∞
9n|n〉 +

∞∑
n=1

9n|n〉 +
∑
j

cj |φj 〉. (7)

The transmission probabilityT is found from|9〉 by utilizing the boundary conditions that the
wavefunction satisfies. On the left lead the wavefunction consists of a rightward-propagating
Bloch wave along with a reflected leftward-propagating Bloch wave. This can be written
as |9L〉 =

∑−1
n=−∞(exp(iny) + r exp(−iny))|n〉, wherer is the reflection coefficient. The

right lead is identical to the left lead and on it the wavefunction has the form of a transmitted
Bloch wave|9R〉 =

∑∞
n=1 t exp(iyn)|n〉 wheret is the transmission coefficient. Thus the

transmission probability that enters the Landauer electrical conductance of the wire is given
by T = |t |2 = |91|2. The electron’s velocity is the same on both leads and so the ratio of
velocities that normally appears in the formula forT is equal to unity.

In the non-orthogonal basis, solving for91 analytically is difficult; thus we change to the
new Hilbert space where the solution is more straightforward. The transmission probability
T is unaffected since the coefficient9 ′1 remains the same for fixedE. The new Hamiltonian
operatorHE and its eigenvectors{|9〉′} are now assumed to be expressed in an orthonormal
basis{|n〉′, |φj 〉} with the new Hamiltonian matrix elements defined in terms of the matrix
elements of the initial HamiltonianH and the overlap matrixS via equation (4). Thus if



6916 E G Emberly and G Kirczenow

there is any non-orthogonality in the original basis sets of the three isolated systems, then
H0 becomesHE

0 . The non-orthogonality between the orbitals on the molecule and the leads
changesW toWE .

We evaluate9 ′1 by solving a Lippmann–Schwinger (LS) equation. This equation is defined
only after the transformation and is given by

|9〉′ = |80〉′ +G0(E)W
E|9〉′. (8)

HereG0(E) = (E−HE
0 )
−1 is the Green’s function for the decoupled system of left, right leads

and the molecule. The electron is initially in the eigenstate|80〉′ of the left lead propagating
with an energyE. It is confined to the left lead and is written as

|80〉′ =
−1∑

n=−∞
(8′0)n|n〉′. (9)

It should be emphasized that the LS equation, equation (8), is only valid after the change
to the new Hilbert space where the basis is orthogonal. This is because it is now possible
to distinctly separate the states on the leads from those on the molecule. The original non-
orthogonal basis did not allow for this clear distinction and contradictions arise if the analogues
of the entities in equation (8) are constructed using this basis.

The free propagator,G0, can be expressed in terms of the energy eigenstates ofHE
0 of the

isolated leads and of the molecule. It will be written as a sum of three separate free propagators
for the left and right leads and the molecule,GL

0 ,GR
0 , andGM

0 . The left and right leads have
been assumed to be identical, so their free propagators will be the same. For the leads with
energy eigenstates{|80(y)〉′} having energyε(y),

GR
0 =

∑
y

|80(y)〉′〈80(y)|′
E − ε(y) . (10)

Herey is the wavenumber in units of the inverse lattice parameter. Expressing the eigenstates
in terms of the basis{|n〉′}, the free propagator on the leads has the form

GR
0 =

∞∑
n=1

∞∑
m=1

(GR
0 )n,m|n〉′〈m|′. (11)

The matrix elements,(GR
0 )n,m, are evaluated analytically in the appendix.

For the molecule the free propagator expressed in terms of its MOs is

GM
0 =

∑
j

|φj 〉〈φj |
E − εj =

∑
j

(GM
0 )j |φj 〉〈φj |. (12)

Using these expressions for the wavefunctions and the free propagator, the LS equation
becomes (the primes have been dropped)
−1∑

n=−∞
9n|n〉 +

∞∑
n=1

9n|n〉 +
∑
j

cj |φj 〉

=
−1∑

n=−∞
(80)n|n〉

+

( −1∑
n,m=−∞

(GL
0 )n,m|n〉〈m| +

∞∑
n,m=1

(GR
0 )n,m|n〉〈m| +

∑
j

(GM
0 )j |φj 〉〈φj |

)
WE

×
( −1∑
n=−∞

9n|n〉 +
∞∑
n=1

9n|n〉 +
∑
j

cj |φj 〉
)
.
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We now apply the bras〈−1|, 〈φj | and〈1| to the above equation, making use of their formal
mutual orthogonality. This gives the following set of simultaneous linear equations:

9−1 = (80)−1 + (GL
0 )−1,−1

∑
j

〈−1|WE|φj 〉cj (13)

cj = (GM
0 )j (〈φj |WE| − 1〉9−1 + 〈φj |WE|1〉91) (14)

91 = (GR
0 )1,1

∑
j

〈1|WE|φj 〉cj (15)

where

〈1|WE|φj 〉 = WE
1,j = W1,j − ES1,j (16)

which is the interaction matrix element connecting the lead orbital adjacent to the molecule
and thej th MO. Notice that it includes the overlap between thej th MO and the first lead
orbital.

These equations can be solved for the unknowns,9−1,91 and thecj , yielding

91 = A(80)−1)

[(1− B)(1− C)− AD]
(17)

9−1 = (1− B)(80)−1

[(1− B)(1− C)− AD]
(18)

cj = (GM
0 )j

(
WE
j,1A +WE

j,−1(1− B)
[(1− B)(1− C)− AD]

)
(80)−1 (19)

where, making use of the symmetry betweenGL
0 andGR

0 ,

A = (GR
0 )1,1

∑
j

WE
1,j (G

M
0 )jW

E
j,−1

B = (GR
0 )1,1

∑
j

(WE
1,j )

2(GM
0 )j

C = (GR
0 )1,1

∑
j

(WE
−1,j )

2(GM
0 )j

D = (GR
0 )1,1

∑
j

WE
−1,j (G

M
0 )jW

E
j,1.

The transmission probabilityT (E) is given by|91|2.

3. Antiresonance condition and mechanisms

An antiresonance is defined to be a zero of the electron transmission probability. SinceT (E)

is given by the squared modulus of91, the zeros occur where91 is zero. From equation (17)
this happens whenA = 0. Thus the antiresonance condition is

(GR
0 )1,1

∑
j

WE
1,j (G

M
0 )jW

E
j,−1 = 0 (20)

or ∑
j

(W1,j − ES1,j )(Wj,−1− ESj,−1)

E − εj = 0 (21)

where the sum overj includes just the MOs.
The antiresonance conditions (20) and (21) that we have derived allow us to identify two

distinct mechanisms that can give rise to antiresonances in molecular wire transport.
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In the first of these mechanisms, antiresonances arise due to an interference between the
different MOs of the molecule. This is seen directly from equation (21): an electron incident
from the left lead, hops from the lead site adjacent to the molecule onto each of the molecular
orbitals with a weightWE

j,−1. It then propagates through each of the different orbitalsj .
These processes interfere with each other as the electron propagates through the molecule and
proceeds to hop onto the first lead site on the right lead with a weightWE

1,j .
What is particularly interesting about this molecular mechanism, and differentiates it

qualitatively from a standard multi-beam interference problem encountered in optics via a
diffraction grating, is that the antiresonances arise frominterference between molecular states
that differ in energy. It is also not possible to make an analogy between this effect and Fano
resonances [30], which are a good analogue of the antiresonances in electron waveguides of the
stub-tuner type [21]. For those waveguides, the antiresonances arise from interference between
the direct transmission of a continuum of electron modes (which exists in the semiconductor
quantum wire) and transmission via discrete modes that reside within the resonator. In our
model, transmitted electronsmustpass through the molecule, so there is nodirect transmission
of continuum modes from the left to the right lead and the Fano mechanism does not apply.
The molecular wire antiresonances are also not analogous to those found in the Fabry–Perot
model of double-barrier resonant tunnelling [23]. In that model, electrons couple to different
modes within the well which interfere upon exiting the well. But these modes are all at
the same energy. As was mentioned above, the interfering molecular states are at different
energies.

This antiresonance mechanism is qualitatively similar to that which was found in previous
work on electron transfer between donors and acceptors in molecules [12]; however, the
antiresonance conditions (20) and (21) that we have derived differ from those that were obtained
earlier partly because the non-orthogonality of the atomic orbitals has been included in our
theory. In particular, for a molecule withN distinct energy levels, the resonance condition
(21) gives rise to a polynomial equation of degreem = (N − 1)+ 2, so there can be at mostm
antiresonances for this model. Neglecting the overlapsS1,j andSj,−1 between atomic orbitals
on different atoms leads to a polynomial equation of a lower order and can yield qualitatively
different predictions, as will be made clear below.

The second antiresonance mechanism that we identify on the basis of the conditions (20)
and (21) has no analogue in previous work and is at first sight quite surprising since it is
due entirely to the non-orthogonality of atomic orbitals on different atoms. It occurs when
only a single molecular orbitala couples appreciably to the leads, which should happen in
some real systems for reasons of symmetry, as is discussed in the next section. In such cases
equation (21) becomes(Wa,−1−ESa,−1)(W1,a−ES1,a) = 0. As many as two antiresonances
are possible in this case. They arise because the energy-dependent coupling between the
leads and the molecule is equal to zero at the energiesE for which the energy-dependent
hopping parameter(Wa,−1 − ESa,−1) or (W1,a − ES1,a) vanishes. This cancellation arises
because of the non-orthogonality between the atomic orbitals of the molecule and those of
the leads.

We explore some specific molecular systems that should exhibit each of the above
antiresonance mechanisms in the following section.

The present theory is readily extended to include second- and more-distant-neighbour
interactions and overlaps. These will act as a perturbations to the antiresonance values. If
the interactions are sufficiently long ranged to couple the two leads to each other directly
in addition to coupling them indirectly via the molecule, other antiresonance mechanisms,
including Fano-like effects, become possible. However, detailed consideration of these is
beyond the scope of this paper.
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4. Multi-channel leads and metallic contacts

The above model has yielded an equation which predicts energies at which antiresonances
should occur in molecular wire systems. It was based on a highly idealized model which
assumed that there was only a single propagating electronic mode in the leads. This single mode
was only allowed to interact with the molecular orbitals on the molecule. Real leads, whether
organic or inorganic, will certainly not be as simple. However, the two calculations presented
below show that the key predictions made by this simple model should apply quantitatively to
some more complex systems as well.

A good approximation to a 1D lead with only one orbital per site is conjugatedtrans-
polyacetylene. Theπ backbone of this polymer is orthogonal to theσ orbitals in the plane.
Second-nearest-neighbourπ interactions between carbon atoms are also small compared to
nearest-neighbour interactions. The conjugation of the polymer creates a band gap in theπ

energy band of this system. If one inserts a molecule whose spectrum also consists ofπ andσ
molecular orbitals into the backbone of this structure in a suitably symmetric way, only theπ

band of the polymer will interact with theπ states of the molecule. It is important however that
the inserted molecule be long enough that theπ orbitals on the left polyacetylene lead cannot
overlap with theπ orbitals on the right lead. Otherwise electrons could hop directly from the
left lead to the right lead without passing through the inserted molecule. Thus our simple model
is applicable to a system consisting ofπ conjugated leads attached to a molecular wire with
π states if the wire is long enough that there is no direct interaction between the leads and the
geometry is such thatσ–π hybridization between the leads and molecular wire is forbidden.
The antiresonance condition, equation (21), should be able to predict the antiresonances of
these more complicated systems if the energiesεj of theπ molecular orbitals are specified
along with their interaction energiesWj,1 andW−1,j with theπ mode of the leads and the
corresponding orbital overlapsSj,1 andS−1,j .

We now proceed to calculate the electron transmission probability for two such model
systems. Our calculations are based on a numerical method which determines the transmission
probability of a molecular wire coupled to multi-channel tight-binding leads [10, 31]. The
multi-channel leads are constructed out of multi-atom unit cells which are then attached to the
molecular wire. The non-orthogonality within the leads and the molecule and also between the
leads and the molecule is treated with the use of our transformation. The calculation proceeds
by evaluating the band structure of the left and right leads from which it is then possible to
determine the propagating electron modes (Bloch states){|8+

j 〉, |8−j 〉} at a given energyE.
In these multi-channel calculations the wavefunction for an electron incident in theith mode
has the following boundary conditions. In the left lead,|9i

L〉 = |8+
i 〉 +

∑
j rj,i |8−j 〉. On

the molecule the wavefunction is a linear combination of the atomic orbitals on the molecule.
On the right lead the wavefunction is|9i

R〉 =
∑

j tj , i|8+
j 〉. With the above form for the

wavefunction we then solve Schrödinger’s equationH |9i〉 = E|9i〉 for the molecular wire
system to find the transmission amplitudestj,i which connect the modesi in the left lead to
those in the right lead,j . The transmission probability is then found using

T (E) =
∑
i

∑
j

∣∣∣∣ vivj
∣∣∣∣ |ti,j |2 (22)

where the sum overj is over the rightward-propagating modes in the left lead and the sum over
i is over rightward-propagating modes in the right lead. The velocity ratio now appears since
the velocities of modes in the left and right leads may be different. We now show that provided
the model system meets the assumptions of the analytical model presented above, this more
sophisticated numerical method yields results consistent with the analytical predictions.
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The first calculation utilizes thetrans-polyacetylene polymer to model the left and right
ideal leads. We have calculated the band structure for these leads and this is shown in figure 2.
The unit cell for the polyacetylene lead was taken to consist of two CH groups and the group
spacing was taken from Suet al [32]. Theπ band extends from around−14.5 eV to−5 eV and
has a band gap of around−1.4 eV starting at−11.2 eV. The upperπ band is unoccupied. The
other energy bands areσ modes. In reality, it is well known from electron transport studies of
trans-polyacetylene that soliton and polaron formation is favoured when charge is injected into
the chain [32, 33]. We do not include such effects in the present calculation; here the infinite
polyacetylene chains are taken to be static periodic structures—they represent ideal quasi-one-
dimensional leads. For this system we consider a molecular wire with threeσ states but with
just a singleπ level to which the leads couple. The model parameters for the molecular wire’s
coupling of itsπ state to theπ band of the leads are chosen such that our analytic antiresonance
condition (21) predicts an antiresonance in the occupiedπ energy band and at an energy where
only a π mode propagates in the left lead. If there were a transmittedσ mode present at
the energy of the antiresonance as well, its transmission would be superimposed on theπ

transmission which would possibly obscure the antiresonance. A singleπ mode propagates
through this system between the energies of−12 eV and−11.2 eV. For our molecule with a
singleπ state, the antiresonance arising out of the interaction with the left lead is predicted
by (21) to occur at an energy ofE = Wπ,−1/Sπ,−1. If we choose the overlap to be 0.3 and
an interaction energy of−3.525 eV between theπ state of the molecule and theπ orbital
on the nearest carbon atom on the lead, the antiresonance is predicted to occur at−11.75 eV.
Since the interaction energy is related to the overlap, the two are not completely arbitrary;
however, the interaction energy also depends on the energy of the molecular orbital which
in principle could be chosen to yield the above coupling energy. The numerically calculated

y

−14

−12

−10

−8

−6

E (eV)

Figure 2. Band structure for conjugated polyacetylene calculated using the extended Hückel model.
Theπ band extends from−14.5 eV to−5 eV and has a band gap starting at−11.2 eV.
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electron transmission probability for this system is shown by the solid line in figure 3. The
antiresonance is clearly seen at−11.75 eV. There is also a sharp drop off in transmission
at−12 eV where there are no longer anyσ modes incident from the left lead. Also shown
(the dashed line in figure 3) is the result of the analytic calculation using the (LS) equation
above. This was done for a single-mode lead with its energy band spanning the width of the
polyacetyleneπ band. The couplings and overlaps were chosen to be the same as those used in
the multi-mode case. The agreement between the two calculations is quite good in the vicinity
of the antiresonance.

−12.4 −12.2 −12.0 −11.8 −11.6 −11.4
E (eV)

10
−16

10
−12

10
−8

10
−4

10
0

T
(E

)

Figure 3. Solid line: a transmission plot for a molecule with a singleπ state connected to
polyacetylene leads. Dashed line: a transmission plot calculated using analytic theory for a similar
system.

The above calculation was for infinite polyacetylene leads which are known to be
insulators. Thus, performing a conductance experiment on such a system would be impossible.
Recent experiments on molecular wires have used metallic nano-contacts connected to the
molecule [2]. The system that we base our next calculation on is such a mechanically controlled
break junction (MCBJ) which is bridged by a single molecule. The metallic contacts will be
taken to be gold. We consider the molecular wire to consist of left and rightπ conjugated
chain molecules attached to what we will call the ‘active’ molecule. The purpose of these
conjugated chains is to act as a filter to the many modes that will be incident from the metallic
leads. For appropriate energies they will restrict the propagating electron mode to be only
π -like. The electronic structure of the active molecule will be assumed to consist ofπ - and
σ -like molecular orbitals. Theπ backbone of the chain molecules will only interact with the
π orbitals of the active molecule and so our antiresonance condition should still be applicable
in this model.
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The multi-channel gold leads for our calculation are created using a unit cell composed
of two layers of gold atoms in the (111) direction. Both layers have 20 gold atoms. Since the
Fermi energy for gold resides in the 6s band we only use 6s orbitals on our gold atoms. The
chain molecules consist of eight CH groups each. An atomic diagram of our system is shown
in figure 4. The chain molecules are bonded to clusters each consisting of ten gold atoms that
form the tips of the leads. The carbon atom nearest to the gold tip binds over the triangle of
gold atoms with a perpendicular distance of 1.6 Å. This larger molecular segment consisting
of the gold tips, chain and active molecules is then attached to the left and right unit cells of
the multi-channel gold leads. The chains are now finite polyacetylene and so they now have
discrete energy states rather than bands; the molecular states on these chains areπ -like for
energies in the polyacetyleneπ band. This gives rise to the filtering process mentioned above.
The active molecule is chosen to have twoσ states and twoπ states. Unlike the infinite leads
in the preceding calculation, the finite-chain molecules will conduct. Theirπ -like orbitals will
only couple to the twoπ states of the active molecule.

Figure 4. An atomistic diagram for the MCBJ and molecular wire system. The first unit cells of
the left and right (111) leads are shown as the last two layers of gold atoms on either side. Also
shown are the (CH)8 chain molecules and ‘active’ molecule. These are attached to two clusters
of ten gold atoms that form the tip. The perpendicular distance between the last C atoms on the
chains and the triangle of gold atoms is 1.6 Å.

The Fermi energy for our gold leads is around−10 eV which lies within theπ band.
Thus we would like an antiresonance to occur somewhere near this energy. Again, for this
model system, we make somead hocchoices for our parameters. The two active molecular
π states are chosen to have energiesεa = −14.0 eV andεb = −11.0 eV. The interactions
between these states and theπ orbitals on the carbon atoms directly adjacent to the active
molecule areWa,−1 = W1,a = −3.0 eV andWb,−1 = −W1,b = 1.25 eV. The overlaps are
Sa,−1 = S1,a = 0.14 andSb,−1 = −S1,b = −0.2. Solving the cubic equation to which
equation (21) reduces in this case, yields three real energies, one of them in the desired energy
range predicting an antiresonance at−10.08 eV. We now proceed to calculate the electronic
transmission through this system.

A recent work has studied electron transport through finite conjugated chains attached
to metallic leads with the inclusion of inelastic degrees of freedom [34]. In that study it
was shown that electron injection onto the chains induces a small-polaron defect. However,
for chains of small enough length (ten CH groups or less) it was found that this polaron
defect did not have an appreciable effect on the electron transport compared to the static
case. To see how atomic positional disorder on the chains affects the antiresonance, we
have numerically calculated the transmission probability for several different static atomic
configurations of the finite polyacetylene chains and these are shown in figure 5(a). The solid
curve corresponds to dimerizedtrans-polyacetylene. The short-dashed curve corresponds to
an undimerized chain. The long-dashed curve corresponds to chains with a static soliton.
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(b) Figure 5. (a) The calculated trans-
mission for a two-state active molecule
attached to CH chains and gold (111)
contacts. (b) The calculated differential
conductance assuming Fermi energies of
(solid line)−10.2 eV and (dashed line)
−10.0 eV and a temperature ofT =
293 K.

In all three curves the antiresonance is present, although the magnitude varies in the regions
outside of the antiresonance. Although dynamic effects of polaron or soliton formation have
not been included in the present study, we have shown that the existence of the antiresonance
is not affected by the disorder on the conjugated chains or by whether or not they dimerize.
On the basis of the results presented in reference [34] for short conjugated chains, we expect
that the antiresonance would still survive even with the inclusion of dynamical effects where
the couplings and overlaps may vary.

In experiments on molecular wires the electric currentI through the molecule is measured
as a function of voltageV . The differential conductance is then determined by taking the
derivativeG = dI/dV . We calculate this differential conductance by using a generalization
of the Landauer formula which relates the electric current to the transmission probabilityT (E)

that is given by equation (22). The finite-voltage, finite-temperature Landauer formula that we
use is

I (V ) = 2e

h

∫ ∞
−∞

dE T (E)

(
1

exp[(E − µs)/kT ] + 1
− 1

exp[(E − µd)/kT ] + 1

)
(23)

whereµs = εf + eV/2 andµd = εf − eV/2 and whereεf is the common Fermi energy of
the leads andV is the applied bias voltage.

The differential conductance at room temperature,T = 293 K, calculated from the above
current for two different choices of Fermi energy is shown in figure 5(b). (It was calculated
using the transmission probability for the dimerized chain.) The solid curve corresponds to a
choice of Fermi energy of−10.2 eV. Because it lies to the left of the antiresonance in a region
of strong transmission, the conductance is strong at 0 V. It then drops at around 0.2 V when the
antiresonance is crossed. The dashed curve was calculated using a Fermi energy of−10.0 eV.
It starts in a region of lower transmission and thus the antiresonance suppresses the increase in
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current. After 0.2 V the large transmission to the left of the antiresonance is sampled and the
current rises sharply. So in both cases the antiresonance has served the purpose of lowering
the conductance. It is conceivable to think of utilizing more antiresonances in a narrow energy
range to create a more observable conductance drop. It should also be pointed out that the
differential conductance was calculated using the electron transmission evaluated at 0 V. If one
assumes a linear voltage drop between the leads this approximation is reasonably valid since
the ‘active’ molecule is located roughly in the middle of the bridge between the two leads
and the site energies will not be shifted much by the applied field. The coupling elements are
assumed not to shift in the applied field. With these assumptions, the roots of the antiresonance
condition do not change significantly and so the location of the antiresonance at−10.08 eV
does not shift appreciably.

5. Conclusions

In this article we have presented a theoretical study that suggests that antiresonance phenomena
should be observable in the electrical conductance of molecular wires connected to metallic
nano-contacts. We solved analytically a simple model that exhibits antiresonances and
incorporates for the first time the effects of the non-orthogonality of tight-binding atomic
orbitals on different atoms, an important feature of all molecular systems. The non-
orthogonality was treated exactly by defining a new energy-dependent Hamiltonian operator
and corresponding eigenvector, and then expressing them in an orthonormal basis of a new
Hilbert space. This method was both simple and very general, and should be useful for treating
a wide variety of problems which are best defined in a non-orthogonal basis. The Lippmann–
Schwinger equation for the transmission through the molecular wire was solved in this new
representation and an analytic description of the antiresonances was obtained. In our model the
molecular antiresonances occur due to two different mechanisms. One of these is interference
between the contributions of different molecular orbitals as the electron propagates through
the molecule. The other is the vanishing of the effective hopping matrix element connecting
a pair of atomic orbitals that is due to the non-orthogonality of those orbitals. In both cases
taking the non-orthogonality into account exactly is necessary to obtain reliable results. The
antiresonance condition that we derive, and that determines the energies where the transmission
is zero, only depends on the molecular Green’s function and on the energy-dependent energies
of interaction of the molecular states with the leads.

We have shown that this simple analytically solvable model has predictive power for
more complex systems by performing detailed numerical calculations. The first of these
calculations was for a system on which conductance measurements are not feasible because
of the insulating nature of the leads. However, it demonstrated how a molecular wire with a
singleπ state can generate a transmission antiresonance due to the cancellation of the effective
coupling between the lead and the molecule as a consequence of the mutual non-orthogonality
of atomic orbitals. The second calculation was for a system in which molecular antiresonances
should in principle be accessible to experiment: a molecular wire bridging a break junction
between two gold nano-contacts. In it we have suggested the use ofπ conjugated chains to
act as mode filters. The use of these filters could be useful in most molecular wire systems
where limiting the number of propagating modes to just one would be advantageous. For
filters connected to an ‘active’ molecule it is possible to create an antiresonance near the Fermi
energy of the metal contacts. The antiresonance was predicted to manifest itself by producing
a drop in the differential conductance. In both cases the location of the antiresonance found in
the numerical simulations was in agreement with the prediction of our simple analytic model.
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Appendix A. Green’s functions for ideal leads

The ideal 1D leads are treated using TBA, where the site energy isα, and the nearest-neighbour
hopping energy isβ. The overlap between nearest-neighbour lead sites isω and is used to
define an energy-dependent hopping parameterβE = β − Eω for an electron with energy
E. This allows us to use an effective orthonormal basis. The reduced wavevector,y, of a
propagating electron can be found from the equationε(y) = α + 2βE cos(y). The leads are
semi-infinite. Because of this the boundary conditions placed on the wavefunction are such
that it is zero on site 0. Thus a valid choice for an incident electron state is a linear combination
of a forward- and backward-propagating Bloch state, given by

|80(y)〉 =
∞∑
n=1

(80(y))n|n〉 =
∞∑
n=1

1√
2N

(eiyn − e−iyn)|n〉. (A.1)

The matrix element for the free propagator of the lead between sitesn andn′ is given by

(GR
0 )n,n′ =

∑
y

(80(y))n(80(y))
∗
n′

E − ε(y) + iδ
. (A.2)

Using the above expression for(80(y))n, the matrix element becomes

(G0(E))n,n′ = 1

2N

∑
y

eiy(n−n′) + eiy(n′−n) − eiy(n+n′) − eiy(−n−n′)

E − ε(y) + iδ
. (A.3)

AsN becomes large the above summation goes over to an integral which is given by

(GR
0 )n,n′ =

1

2Na

L

2π

∫ π

−π

eiy(n−n′) + eiy(n′−n) − eiy(n+n′) − eiy(−n−n′)

E − ε(y) + iδ
dy (A.4)

whereL = Na anda is the lattice parameter of the chain. Only the matrix element on the first
site in the lead is needed, since this is the only site which is coupled to the molecule, son and
n′ are set equal to 1. Substituting the expression forε(y), the following integral is arrived at:

(GR
0 )1,1 =

1

8πβE

∫ π

−π

2(1− e2iy)

(E − α)/(2βE) + iδ/(2βE)− cosy
dy. (A.5)

This integral can be evaluated by performing contour integration, and the result is

(GR
0 )1,1 =

1

2βE
(1− ei 2y0)

siny0
(A.6)

wherey0 satisfies the condition(E − α)/(2βE)− cosy0 = 0.
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